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1 Motivation

 Building modelling including geometry and semantics important for
Geographical Information Systems (GIS) and Building Information Model
(BIM)

 Focus on indoor mapping

 Deep Learning as state-of-the-art approach for semantic labelling

 Using 3D data together with image data is expected to improve
segmentation results

2 Sensor fusion with CNN

 SegNet-based architecture (Badrinarayanan et al., 2017)

 Encoder-decoder type network design.

 The first 13 layers in the VGG16 network (Simonyan and Zisserman, 2014)
comprise the encoder network in SegNet.

 Each layer is 3x3 convolution, which are stacked on each other.

 The encoder receives three channel image input to generate a low
dimensional representation which is passed onto the decoder

 Pixel-wise classification using Softmax classifier

4 Results

 We use Area 1 of 2D-3D-S
dataset for our experiments

 Test T1: 50% of the images for
training (5164 images) and the
other 50% for validation (5163
images)

 Test T2: 10% of the data (1047
images) for training (six selected
rooms: three offices, two
hallways and one conference
room) and 90% for testing

 Focus on structural elements in
buildings

 Evaluation:

5 Discussion & Outlook

 Incorporating depth improves slightly the
labeling results in an indoor scene

 For structural elements of buildings, this
improvement is even more significant

 RdGdBd representation delivers better
results than HSD representation

 Using RGBD input up to 2% higher
accuracy can be achieved

 RGBD input improves IoU for almost all
classes compared to RGB and RdGdBd

input

* corresponding author: dorota.iwaszczuk@tum.de

3 Dataset

 Stanford 2D-3D Semantics Dataset (2D-3D-S) (Armeni et al., 2017).

 Collected using the Matterport Camera, which combines 3 structured-
light sensors to capture RGB and 360° depth images.

 Consist of 6 indoor areas including 3D textured mesh, RGB-D images
and semantic pixel-wise annotations.

 13 object classes, including ceiling, floor, wall, column, beam, window,
door, table chair, bookcase, sofa, board, and clutter. Sofa class is,
however, underrepresented, therefore this class was merged with
class clutter.

 Preprocessing

 Resizing: 224x224

 Depth filtering: Inpainting

Fig. 4: Improvement of the labeling at the

boundaries using depth on example of

class column (yellow).

Fig. 3: Results of the label prediction. 

We fuse the RGB and depth information by combining the depth with the
reduced color space. We perform this fusion in two different ways:

 Fusion F1: transforming RGB image to HSV color space and replacing the
value component with depth

 Let r, g and b be the values of the RGB images normalized to [0,1], cmax =
max(r; g; b) the maximal value and cmin = min(r; g; b) the minimum value of
those three components. We generate images consisting of three channels
HSD, where their two first components are calculated as

 The third component D is generated from depth values normalized to [0,1]

 Fusion F2: transforming this HSD image back to RGB color space.

 Let c1 be primary color defined as integer component of H=60. We perform
colors space back transformation as follows

Fig. 2: An exemplary image from the dataset
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Fig. 1: SegNet-based encoder-decoder architecture for semantic labeling using RGB and depth images

Conv + Batch Normalization + ReLU

Pooling Upsampling Softmax 

where

Tab. 1: Results on semantic labeling in test T1

Tab. 3: Results on semantic labeling of structural 

elements of buildings in test T1

Tab. 2: Results on semantic labeling in test T2

Tab. 4: Results on semantic labeling of structural 

elements of buildings in test T2

Channels GlobalAcc MeanAcc Mean IoU

RGB 92.2% 92.6% 84.0%

HSD 92.8% 93.4% 85.6%

RdGdBd 93.4% 94.5% 86.8%

RGBD 94.7% 94.2% 89.4%

Channels GlobalAcc MeanAcc Mean IoU

RGB 90.9% 92.5% 81.2%

HSD 91.4% 92.5% 82.0%

RdGdBd 92.1% 93.5% 83.2%

RGBD 93.6% 92.8% 86.3%

Channels GlobalAcc MeanAcc Mean IoU

RGB 71.8% 62.9% 48.7%

HSD 69.4% 59.4% 45.7%

RdGdBd 72.8% 67.8% 55.0%

RGBD 74.7% 70.7% 56.9%

Channels GlobalAcc MeanAcc Mean IoU

RGB 65.0% 61.8% 45.2%

HSD 61.0% 55.7% 40.0%

RdGdBd 65.7% 60.1% 45.4%

RGBD 69.4% 64.0% 49.2%
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