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Motivation

Building modelling including geometry and semantics important for
Geographical Information Systems (GIS) and Building Information Model
(BIM)

1 Focus on indoor mapping
1 Deep Learning as state-of-the-art approach for semantic labelling
0 Using 3D data together with image data is expected to improve

segmentation results

3 Dataset

7 Stanford 2D-3D Semantics Dataset (2D-3D-S) (Armeni et al., 2017).

3 Collected using the Matterport Camera, which combines 3 structured-
light sensors to capture RGB and 360° depth images.

7 Consist of 6 indoor areas including 3D textured mesh, RGB-D images
and semantic pixel-wise annotations.

m

13 object classes, including ceiling, floor, wall, column, beam, window,
door, table chair, bookcase, sofa, board, and clutter. Sofa class is,
however, underrepresented, therefore this class was merged with

2 Sensor fusion with CNN

SegNet-based architecture (Badrinarayanan et al., 2017)
Encoder-decoder type network design.

The first 13 layers in the VGG16 network (Simonyan and Zisserman, 2014)
comprise the encoder network in SegNet.

Each layer is 3x3 convolution, which are stacked on each other.

The encoder receives three channel image Iinput to generate a low
dimensional representation which is passed onto the decoder

0 Pixel-wise classification using Softmax classifier
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Fig. 1: SegNet-based encoder-decoder architecture for semantic labeling using RGB and depth images

We fuse the RGB and depth information by combining the depth with the
reduced color space. We perform this fusion in two different ways:

3 Fusion F1: transforming RGB image to HSV color space and replacing the
value component with depth

1 Letr, g and b be the values of the RGB images normalized to [0,1], C, ., =
max(r; g; b) the maximal value and c.,, = min(r; g; b) the minimum value of
those three components. We generate images consisting of three channels
HSD, where their two first components are calculated as
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3 The third component D is generated from depth values normalized to [0,1]

d Fusion F2: transforming this HSD image back to RGB color space.

7 Let ¢, be primary color defined as integer component of H=60. We perform
colors space back transformation as follows
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Fig. 2: An exemplary image from the dataset
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1 Test T1: 50% of the images for

dJ Test T2: 10% of the data (1047

7 Focus on structural elements In

7 Evaluation:

class clutter.

1 Preprocessing

d Resizing: 224x224
3 Depth filtering: Inpainting

4 Results
7 We use Area 1 of 2D-3D-S

dataset for our experiments

training (5164 images) and the
other 50% for validation (5163
images)

images) for training (six selected
rooms: three offices, two
hallways and one conference
room) and 90% for testing

buildings
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Tab. 1: Results on semantic labeling in test T1

mmm
90.9% 92.5% 81.2%

HSD 91.4% 92.5% 82.0%

R.GyB, 92.1% 93.5% 83.2%

RGBD 93.6% 92.8% 86.3%

Tab. 3: Results on semantic labeling of structural
elements of buildings in test T1

MM
92.2% 92.6% 84.0%

HSD 92.8% 93.4% 85.6%

RGB,  93.4% 94.5% 86.8%

RGBD 94.7% 94.2% 89.4%
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Fig. 3: Results of the label prediction.

Tab. 2: Results on semantic labeling in test T2

MM
65.0% 61.8% 45.2%

HSD 61.0% 55.7% 40.0%

R,G4B 65.7% 60.1% 45.4%

RGBD 69.4% 64.0% 49.2%

Tab. 4: Results on semantic labeling of structural
elements of buildings in test T2

Mm
71.8% 62.9% 48.7%

HSD 69.4% 59.4% 45.7%

R, GyB, 72.8% 67.8% 55.0%

RGBD 74.7% 70.7% 56.9%

d Incorporating depth improves slightly the

abeling results in an indoor scene

d For structural elements of buildings, this
iImprovement is even more significant

d RyG4By representation delivers better Ground- R,G.B,

results than HSD representation

d Using RGBD input up to 2%
accuracy can be achieved
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Fig. 4: Improvement of the labeling at the
boundaries using depth on example of
class column (yellow).

d RGBD input improves loU for almost all
classes compared to RGB and R, G,B,

iInput
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