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1 Motivation

 Building modelling including geometry and semantics important for
Geographical Information Systems (GIS) and Building Information Model
(BIM)

 Focus on indoor mapping

 Deep Learning as state-of-the-art approach for semantic labelling

 Using 3D data together with image data is expected to improve
segmentation results

2 Sensor fusion with CNN

 SegNet-based architecture (Badrinarayanan et al., 2017)

 Encoder-decoder type network design.

 The first 13 layers in the VGG16 network (Simonyan and Zisserman, 2014)
comprise the encoder network in SegNet.

 Each layer is 3x3 convolution, which are stacked on each other.

 The encoder receives three channel image input to generate a low
dimensional representation which is passed onto the decoder

 Pixel-wise classification using Softmax classifier

4 Results

 We use Area 1 of 2D-3D-S
dataset for our experiments

 Test T1: 50% of the images for
training (5164 images) and the
other 50% for validation (5163
images)

 Test T2: 10% of the data (1047
images) for training (six selected
rooms: three offices, two
hallways and one conference
room) and 90% for testing

 Focus on structural elements in
buildings

 Evaluation:

5 Discussion & Outlook

 Incorporating depth improves slightly the
labeling results in an indoor scene

 For structural elements of buildings, this
improvement is even more significant

 RdGdBd representation delivers better
results than HSD representation

 Using RGBD input up to 2% higher
accuracy can be achieved

 RGBD input improves IoU for almost all
classes compared to RGB and RdGdBd
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3 Dataset

 Stanford 2D-3D Semantics Dataset (2D-3D-S) (Armeni et al., 2017).

 Collected using the Matterport Camera, which combines 3 structured-
light sensors to capture RGB and 360° depth images.

 Consist of 6 indoor areas including 3D textured mesh, RGB-D images
and semantic pixel-wise annotations.

 13 object classes, including ceiling, floor, wall, column, beam, window,
door, table chair, bookcase, sofa, board, and clutter. Sofa class is,
however, underrepresented, therefore this class was merged with
class clutter.

 Preprocessing

 Resizing: 224x224

 Depth filtering: Inpainting

Fig. 4: Improvement of the labeling at the

boundaries using depth on example of

class column (yellow).

Fig. 3: Results of the label prediction. 

We fuse the RGB and depth information by combining the depth with the
reduced color space. We perform this fusion in two different ways:

 Fusion F1: transforming RGB image to HSV color space and replacing the
value component with depth

 Let r, g and b be the values of the RGB images normalized to [0,1], cmax =
max(r; g; b) the maximal value and cmin = min(r; g; b) the minimum value of
those three components. We generate images consisting of three channels
HSD, where their two first components are calculated as

 The third component D is generated from depth values normalized to [0,1]

 Fusion F2: transforming this HSD image back to RGB color space.

 Let c1 be primary color defined as integer component of H=60. We perform
colors space back transformation as follows

Fig. 2: An exemplary image from the dataset

RGB depth HSD RdGdBd

Fig. 1: SegNet-based encoder-decoder architecture for semantic labeling using RGB and depth images

Conv + Batch Normalization + ReLU
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Tab. 1: Results on semantic labeling in test T1

Tab. 3: Results on semantic labeling of structural 

elements of buildings in test T1

Tab. 2: Results on semantic labeling in test T2

Tab. 4: Results on semantic labeling of structural 

elements of buildings in test T2

Channels GlobalAcc MeanAcc Mean IoU

RGB 92.2% 92.6% 84.0%

HSD 92.8% 93.4% 85.6%

RdGdBd 93.4% 94.5% 86.8%

RGBD 94.7% 94.2% 89.4%

Channels GlobalAcc MeanAcc Mean IoU

RGB 90.9% 92.5% 81.2%

HSD 91.4% 92.5% 82.0%

RdGdBd 92.1% 93.5% 83.2%

RGBD 93.6% 92.8% 86.3%

Channels GlobalAcc MeanAcc Mean IoU

RGB 71.8% 62.9% 48.7%

HSD 69.4% 59.4% 45.7%

RdGdBd 72.8% 67.8% 55.0%

RGBD 74.7% 70.7% 56.9%

Channels GlobalAcc MeanAcc Mean IoU

RGB 65.0% 61.8% 45.2%

HSD 61.0% 55.7% 40.0%

RdGdBd 65.7% 60.1% 45.4%

RGBD 69.4% 64.0% 49.2%
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